
The Rust for Linux
Kernel Report

Miguel Ojeda
ojeda@kernel.org

mailto:ojeda@kernel.org

The last year

Growing Community

~460 subscribers in the rust-for-linux mailing list.

From ~340 last year.

Similar to the BPF and linux-rt-users lists.

— https://subspace.kernel.org/vger.kernel.org.html

https://subspace.kernel.org/vger.kernel.org.html

Growing Community

● The Zulip instance (i.e. chat) is growing too: 500 users now!

— https://rust-for-linux.zulipchat.com/stats

https://rust-for-linux.zulipchat.com/stats

Growing Community

● The Zulip instance (i.e. chat) is growing too: ~70 regulars

— https://rust-for-linux.zulipchat.com/stats

https://rust-for-linux.zulipchat.com/stats

Growing Community

● 8000+ messages in the last year, which represent 70% of the total.

— https://rust-for-linux.zulipchat.com/stats

https://rust-for-linux.zulipchat.com/stats

Growing Community

● Speaking of Zulip, we are making it anonymously readable.

Growing Core Team

MAINTAINERS: add Benno Lossin as Rust reviewer

Benno has been involved with the Rust for Linux project for
the better part of a year now. He has been working on solving
the safe pinned initialization problem [1], which resulted in
the pin-init API patch series [2] that allows to reduce the
need for `unsafe` code in the kernel. He is also working on
the field projection RFC for Rust [3] to bring pin-init as a
language feature.

His expertise with the language will be very useful to have
around in the future if Rust grows within the kernel, thus
add him to the `RUST` entry as reviewer.

— Commit b0cf5d50210d (“MAINTAINERS: add Benno Lossin as Rust reviewer”)

Growing Core Team

MAINTAINERS: add Andreas Hindborg as Rust reviewer

Andreas has been involved with the Rust for Linux project for
more than a year now. He has been primarily working on the
Rust NVMe driver [1], presenting it in several places (such
as LPC [2][3] and Kangrejos [4]).

In addition, he recently submitted the Rust null block driver
[5] and has been reviewing patches in the mailing list for
some months.

Thus add him to the `RUST` entry as reviewer.

— Commit 2a6f5df3cd94 (“MAINTAINERS: add Andreas Hindborg as Rust reviewer”)

Growing Core Team

MAINTAINERS: add Alice Ryhl as Rust reviewer

Alice has been involved with the Rust for Linux project for
almost a year now. She has been primarily working on the
Android Binder Driver [1].

In addition, she has been reviewing patches in the mailing
list for some months and has submitted improvements to the
core Rust support.

She is also part of the core maintainer team for the widely
used library Tokio [2], an asynchronous Rust runtime.

Her expertise with the language will be very useful to have
around in the future if Rust grows within the kernel, thus
add her to the `RUST` entry as reviewer.

— Commit d4d84eaa3f39 (“MAINTAINERS: add Alice Ryhl as Rust reviewer”)

Aakash Sen Sharma <aakashsensharma@gmail.com>
Alexander Pantyukhin <apantykhin@gmail.com>
Alice Ryhl <aliceryhl@google.com>
Andrea Righi <andrea.righi@canonical.com>
Andreas Hindborg <nmi@metaspace.dk>
Ariel Miculas <amiculas@cisco.com>
Arnaldo Carvalho de Melo <acme@kernel.org>
Asahi Lina <lina@asahilina.net>
Bagas Sanjaya <bagasdotme@gmail.com>
Ben Gooding <ben.gooding.dev@gmail.com>
Benno Lossin <benno.lossin@proton.me>
Björn Roy Baron <bjorn3_gh@protonmail.com>
Boqun Feng <boqun.feng@gmail.com>
Carlos Bilbao <carlos.bilbao@amd.com>
Conor Dooley <conor.dooley@microchip.com>
Costa Shulyupin <costa.shul@redhat.com>
Daniel Almeida <daniel.almeida@collabora.com>
David Gow <davidgow@google.com>
David Rheinsberg <david@readahead.eu>
Ethan D. Twardy <ethan.twardy@gmail.com>
Finn Behrens <fin@nyantec.com>
FUJITA Tomonori <tomo@exabit.dev>
Gary Guo <gary@garyguo.net>
Guillaume Plourde <gplourde@protonmail.com>
Jamie Cunliffe <Jamie.Cunliffe@arm.com>
Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Maíra Canal <mcanal@igalia.com>

Martin Rodriguez Reboredo <yakoyoku@gmail.com>
Masahiro Yamada <masahiroy@kernel.org>
Matteo Croce <teknoraver@meta.com>
Matthew Leach <dev@mattleach.net>
Michael Ellerman <mpe@ellerman.id.au>
Michele Dalle Rive <dallerivemichele@gmail.com>
Miguel Ojeda <ojeda@kernel.org>
Nick Desaulniers <nick.desaulniers@gmail.com>
Olof Johansson <olof@lixom.net>
Paran Lee <p4ranlee@gmail.com>
Patrick Blass <patrickblass@mailbox.org>
Qingsong Chen <changxian.cqs@antgroup.com>
Roy Matero <materoy@proton.me>
SeongJae Park <sj@kernel.org>
Thomas Bamelis <thomas@bamelis.dev>
Timo Grautstück <timo.gr@hotmail.de>
Trevor Gross <tmgross@umich.edu>
TruongSinh Tran-Nguyen <i@truongsinh.pro>
Vinay Varma <varmavinaym@gmail.com>
Vincenzo Palazzo <vincenzopalazzodev@gmail.com>
WANG Rui <wangrui@loongson.cn>
Wedson Almeida Filho <wedsonaf@gmail.com>
Wei Liu <wei.liu@kernel.org>
Wu XiangCheng <bobwxc@email.cn>
Yang Yingliang <yangyingliang@huawei.com>
Yanteng Si <siyanteng@loongson.cn>

Patch series submitters

mailto:aakashsensharma@gmail.com
mailto:apantykhin@gmail.com
mailto:aliceryhl@google.com
mailto:andrea.righi@canonical.com
mailto:nmi@metaspace.dk
mailto:amiculas@cisco.com
mailto:acme@kernel.org
mailto:lina@asahilina.net
mailto:bagasdotme@gmail.com
mailto:ben.gooding.dev@gmail.com
mailto:benno.lossin@proton.me
mailto:bjorn3_gh@protonmail.com
mailto:boqun.feng@gmail.com
mailto:carlos.bilbao@amd.com
mailto:conor.dooley@microchip.com
mailto:costa.shul@redhat.com
mailto:daniel.almeida@collabora.com
mailto:davidgow@google.com
mailto:david@readahead.eu
mailto:ethan.twardy@gmail.com
mailto:fin@nyantec.com
mailto:tomo@exabit.dev
mailto:gary@garyguo.net
mailto:gplourde@protonmail.com
mailto:Jamie.Cunliffe@arm.com
mailto:jiapeng.chong@linux.alibaba.com
mailto:mcanal@igalia.com
mailto:yakoyoku@gmail.com
mailto:masahiroy@kernel.org
mailto:teknoraver@meta.com
mailto:dev@mattleach.net
mailto:mpe@ellerman.id.au
mailto:dallerivemichele@gmail.com
mailto:ojeda@kernel.org
mailto:nick.desaulniers@gmail.com
mailto:olof@lixom.net
mailto:p4ranlee@gmail.com
mailto:patrickblass@mailbox.org
mailto:changxian.cqs@antgroup.com
mailto:materoy@proton.me
mailto:sj@kernel.org
mailto:thomas@bamelis.dev
mailto:timo.gr@hotmail.de
mailto:tmgross@umich.edu
mailto:i@truongsinh.pro
mailto:varmavinaym@gmail.com
mailto:vincenzopalazzodev@gmail.com
mailto:wangrui@loongson.cn
mailto:wedsonaf@gmail.com
mailto:wei.liu@kernel.org
mailto:bobwxc@email.cn
mailto:yangyingliang@huawei.com
mailto:siyanteng@loongson.cn

...as well as other contributors

Even more people involved in other tags, e.g. Signed-off-by,
Reviewed-by...

Kernel maintainers are also getting involved!

e.g. KUnit maintainers got Rust files in their MAINTAINERS entry.

MAINTAINERS: add Rust KUnit files to the KUnit entry

The KUnit maintainers would like to maintain these files on
their side too (thanks!), so add them to their entry.

With this in place, `scripts/get_maintainer.pl` prints both
sets of maintainers/reviewers (i.e. KUnit and Rust) for those
files, which is the behavior we are looking for.

— Commit 64bd4641310c ("MAINTAINERS: add Rust KUnit files to the KUnit entry")

...as well as other contributors

Even more people involved in other tags, e.g. Signed-off-by,
Reviewed-by...

Kernel maintainers are also getting involved!

e.g. KUnit maintainers got Rust files in their MAINTAINERS entry.

— Commit 64bd4641310c ("MAINTAINERS: add Rust KUnit files to the KUnit entry")

 KERNEL UNIT TESTING FRAMEWORK (KUnit)
 M: Brendan Higgins <brendanhiggins@google.com>
 M: David Gow <davidgow@google.com>
 L: linux-kselftest@vger.kernel.org
 ...
 F: include/kunit/
 F: lib/kunit/
+F: rust/kernel/kunit.rs
+F: scripts/rustdoc_test_*
 F: tools/testing/kunit/

mailto:brendanhiggins@google.com
mailto:davidgow@google.com
mailto:linux-kselftest@vger.kernel.org

External interest

There has been a lot of interest from other parties:

Companies wanting to write drivers

Backporting requests (to 5.15 and 6.1 in particular)

Students wanting to play with the Rust support

We are using Google Sheets to manage the patch series and PRs.

It looks like this:

The Core Team spreadsheet

We are using Google Sheets to manage the patch series and PRs.

It looks like this:

.

The Core Team spreadsheet

Rust for Linux Sponsors

— https://rust-for-linux.com/sponsors
— https://www.memorysafety.org/initiative/linux-kernel/

https://rust-for-linux.com/sponsors
https://www.memorysafety.org/initiative/linux-kernel/

Rust for Linux Sponsors

— https://rust-for-linux.com/sponsors

https://rust-for-linux.com/sponsors

Statements of support

“Being able to use Rust in the Linux kernel is an incredible milestone on

the road to a more secure future for the Internet and everything else

that depends heavily on Linux.”

— https://www.memorysafety.org/blog/rust-in-linux-just-the-beginning/
— https://rust-for-linux.com/industry-and-academia-support#ISRG

https://www.memorysafety.org/blog/rust-in-linux-just-the-beginning/
https://rust-for-linux.com/industry-and-academia-support#ISRG

Statements of support

“Samsung is actively engaged in supporting the integration of Rust code into the

Linux Kernel. Recognizing the significant benefits that Rust brings to kernel and

system software development, particularly in terms of enhancing security and

reducing critical bugs, Samsung is committed to enabling kernel developers to write

block layer device drivers using the Rust programming language. By embracing

modern programming languages like Rust, Samsung aims to attract new talent to

systems development and promote memory safety within the Linux storage stack.”

— https://rust-for-linux.com/industry-and-academia-support#Samsung

https://rust-for-linux.com/industry-and-academia-support#Samsung

Statements of support

“Cisco supports the inclusion and development of Rust in the Linux kernel as a

way of eliminating memory safety bugs and vulnerabilities. We are developing a

next-generation container filesystem in Rust and, to this end, we are contributing

time, code, and the testing effort to the Rust for Linux project.”

— https://rust-for-linux.com/industry-and-academia-support#Cisco

https://rust-for-linux.com/industry-and-academia-support#Cisco

Distributions

— https://ubuntu.com/blog/get-familiar-with-rusty-kernel-programming-in-ubuntu-lunar-lobster

https://ubuntu.com/blog/get-familiar-with-rusty-kernel-programming-in-ubuntu-lunar-lobster

rust-for-linux.com

— https://rust-for-linux.com

https://rust-for-linux.com/branches

rust-for-linux.com

6 months old.
A hub of links, documentation and resources related to the project.
Essentially, everything that cannot got into the kernel tree.

Contributing Guidelines
Subproject pages
Users

It’s going to be our current webpage (W: entry) in MAINTAINERS.
As well as our Maintainer Entry Profile field (P: entry).

https://docs.kernel.org/maintainer/maintainer-entry-profile.html

https://docs.kernel.org/maintainer/maintainer-entry-profile.html

Deprecating the rust branch

The rust branch was the original branch where development happened for
two years.

We kept it synchronized with mainline (by merging Linus’ tree into it), but
otherwise it did not get new features.

Recently, the latest major user (that we are aware of), the NVMe driver, got
rebased on top of rust-next.

Thus the branch can now finally be frozen/archived.

https://rust-for-linux.com/branches

https://rust-for-linux.com/branches

Introducing the rust-dev branch

A branch intended for:

Early testing by taking patches without too much concern.

Can also be done during the merge window.

Easier development.

Knowing what is in the queue.

Typically rebased on top of rust-next often.

Patches (that are not RFCs) should not be based on it.

Managed by Boqun Feng.

Reviewers’ Recommendations

“This is a list of topics about which developers may want rules of thumb or
checklists to start with. This also helps reviewers to understand the code quickly
and provide useful feedbacks. Note that among all the reviewers, there is one we
care most: the future yourself.

These recommendations may be incomplete, since both Rust and Linux are
moving targets. In case where this document doesn’t cover, please consider the
following:

● Be Rust idiomatic as hard as possible.
● Being explicit first and then improving ergonomic usually work.
● If you find a good and reasonable way for a certain problem, please do add it

in this document!”

Rust introduction for v6.1-rc1

The initial support of Rust-for-Linux comes in roughly 4 areas:

- Kernel internals (kallsyms expansion for Rust symbols, %pA format)

- Kbuild infrastructure (Rust build rules and support scripts)

- Rust crates and bindings for initial minimum viable build

- Rust kernel documentation and samples

Rust support has been in linux-next for a year and a half now, and the
short log doesn't do justice to the number of people who have contributed
both to the Linux kernel side but also to the upstream Rust side to
support the kernel's needs. Thanks to these 173 people, and many more,
who have been involved in all kinds of ways:

The merges - v6.1

— https://lore.kernel.org/lkml/202210010816.1317F2C@keescook/

https://lore.kernel.org/lkml/202210010816.1317F2C@keescook/

Miguel Ojeda, Wedson Almeida Filho, Alex Gaynor, Boqun Feng, Gary Guo,
Björn Roy Baron, Andreas Hindborg, Adam Bratschi-Kaye, Benno Lossin,
Maciej Falkowski, Finn Behrens, Sven Van Asbroeck, Asahi Lina, FUJITA
Tomonori, John Baublitz, Wei Liu, Geoffrey Thomas, Philip Herron,
Arthur Cohen, David Faust, Antoni Boucher, Philip Li, Yujie Liu,
Jonathan Corbet, Greg Kroah-Hartman, Paul E. McKenney, Josh Triplett,
Kent Overstreet, David Gow, Alice Ryhl, Robin Randhawa, Kees Cook,
Nick Desaulniers, Matthew Wilcox, Linus Walleij, Joe Perches, Michael
Ellerman, Petr Mladek, Masahiro Yamada, Arnaldo Carvalho de Melo,
Andrii Nakryiko, Konstantin Shelekhin, Rasmus Villemoes, Konstantin
Ryabitsev, Stephen Rothwell, Andy Shevchenko, Sergey Senozhatsky, John
Paul Adrian Glaubitz, David Laight, Nathan Chancellor, Jonathan
Cameron, Daniel Latypov, Shuah Khan, Brendan Higgins, Julia Lawall,
Laurent Pinchart, Geert Uytterhoeven, Akira Yokosawa, Pavel Machek,
David S. Miller, John Hawley, James Bottomley, Arnd Bergmann,
Christian Brauner, Dan Robertson, Nicholas Piggin, Zhouyi Zhou, Elena
Zannoni, Jose E. Marchesi, Leon Romanovsky, Will Deacon, Richard
Weinberger, Randy Dunlap, Paolo Bonzini, Roland Dreier, Mark Brown,
Sasha Levin, Ted Ts'o, Steven Rostedt, Jarkko Sakkinen, Michal
Kubecek, Marco Elver, Al Viro, Keith Busch, Johannes Berg, Jan Kara,
David Sterba, Connor Kuehl, Andy Lutomirski, Andrew Lunn, Alexandre

The merges - v6.1

— https://lore.kernel.org/lkml/202210010816.1317F2C@keescook/

https://lore.kernel.org/lkml/202210010816.1317F2C@keescook/

Belloni, Peter Zijlstra, Russell King, Eric W. Biederman, Willy
Tarreau, Christoph Hellwig, Emilio Cobos Álvarez, Christian Poveda,
Mark Rousskov, John Ericson, TennyZhuang, Xuanwo, Daniel Paoliello,
Manish Goregaokar, comex, Josh Stone, Stephan Sokolow, Philipp Krones,
Guillaume Gomez, Joshua Nelson, Mats Larsen, Marc Poulhiès, Samantha
Miller, Esteban Blanc, Martin Schmidt, Martin Rodriguez Reboredo,
Daniel Xu, Viresh Kumar, Bartosz Golaszewski, Vegard Nossum, Milan
Landaverde, Dariusz Sosnowski, Yuki Okushi, Matthew Bakhtiari, Wu
XiangCheng, Tiago Lam, Boris-Chengbiao Zhou, Sumera Priyadarsini,
Viktor Garske, Niklas Mohrin, Nándor István Krácser, Morgan Bartlett,
Miguel Cano, Léo Lanteri Thauvin, Julian Merkle, Andreas Reindl,
Jiapeng Chong, Fox Chen, Douglas Su, Antonio Terceiro, SeongJae Park,
Sergio González Collado, Ngo Iok Ui (Wu Yu Wei), Joshua Abraham,
Milan, Daniel Kolsoi, ahomescu, Manas, Luis Gerhorst, Li Hongyu,
Philipp Gesang, Russell Currey, Jalil David Salamé Messina, Jon Olson,
Raghvender, Angelos, Kaviraj Kanagaraj, Paul Römer, Sladyn Nunes,
Mauro Baladés, Hsiang-Cheng Yang, Abhik Jain, Hongyu Li, Sean Nash,
Yuheng Su, Peng Hao, Anhad Singh, Roel Kluin, Sara Saa, Geert
Stappers, Garrett LeSage, IFo Hancroft, and Linus Torvalds.

The merges - v6.1

— https://lore.kernel.org/lkml/202210010816.1317F2C@keescook/

https://lore.kernel.org/lkml/202210010816.1317F2C@keescook/

Rust changes for v6.2

The first set of changes after the merge, the major ones being:

- String and formatting: new types `CString`, `CStr`, `BStr` and
 `Formatter`; new macros `c_str!`, `b_str!` and `fmt!`.

- Errors: the rest of the error codes from `errno-base.h`, as well as
 some `From` trait implementations for the `Error` type.

- Printing: the rest of the `pr_*!` levels and the continuation one
 `pr_cont!`, as well as a new sample.

- `alloc` crate: new constructors `try_with_capacity()` and
 `try_with_capacity_in()` for `RawVec` and `Vec`.

The merges - v6.2

— https://lore.kernel.org/rust-for-linux/20221211005609.270457-1-ojeda@kernel.org/

https://lore.kernel.org/rust-for-linux/20221211005609.270457-1-ojeda@kernel.org/

The merges - v6.2

- Procedural macros: new macros `#[vtable]` and `concat_idents!`, as
 well as better ergonomics for `module!` users.

- Asserting: new macros `static_assert!`, `build_error!` and
 `build_assert!`, as well as a new crate `build_error` to support them.

- Vocabulary types: new types `Opaque` and `Either`.

- Debugging: new macro `dbg!`.

— https://lore.kernel.org/rust-for-linux/20221211005609.270457-1-ojeda@kernel.org/

https://lore.kernel.org/rust-for-linux/20221211005609.270457-1-ojeda@kernel.org/

The merges - v6.3

Rust changes for v6.3

More core additions, getting closer to a point where the first Rust
modules can be upstreamed. The major ones being:

- Sync: new types 'Arc', 'ArcBorrow' and 'UniqueArc'.

- Types: new trait 'ForeignOwnable' and new type 'ScopeGuard'.

There is also a substantial removal in terms of lines:

- 'alloc' crate: remove the 'borrow' module (type 'Cow' and trait
 'ToOwned').

— https://lore.kernel.org/rust-for-linux/20230212183249.162376-1-ojeda@kernel.org/

https://lore.kernel.org/rust-for-linux/20230212183249.162376-1-ojeda@kernel.org/

The merges - v6.4

Rust changes for v6.4

More additions to the Rust core. Importantly, this adds the pin-init
API, which will be used by other abstractions, such as the
synchronization ones added here too:

 - pin-init API: a solution for the safe pinned initialization problem.
 This allows to reduce the need for 'unsafe' code in the kernel when
 dealing with data structures that require a stable address. Commit
 90e53c5e70a6 ("rust: add pin-init API core") contains a nice
 introduction -- here is an example of how it looks like:

— https://lore.kernel.org/lkml/20230429012119.421536-1-ojeda@kernel.org/

https://lore.kernel.org/lkml/20230429012119.421536-1-ojeda@kernel.org/

The merges - v6.4
 #[pin_data]
 struct Example {
 #[pin]
 value: Mutex<u32>,
 #[pin]
 value_changed: CondVar,
 }

 impl Example {
 fn new() -> impl PinInit<Self> {
 pin_init!(Self {
 value <- new_mutex!(0),
 value_changed <- new_condvar!(),
 })
 }
 }

 // In a `Box`.
 let b = Box::pin_init(Example::new())?;

 // In the stack.
 stack_pin_init!(let s = Example::new());

— https://lore.kernel.org/lkml/20230429012119.421536-1-ojeda@kernel.org/

https://lore.kernel.org/lkml/20230429012119.421536-1-ojeda@kernel.org/

The merges - v6.4

 - 'sync' module: new types 'LockClassKey' ('struct lock_class_key'),
 'Lock', 'Guard', 'Mutex' ('struct mutex'), 'SpinLock'
 ('spinlock_t'), 'LockedBy' and 'CondVar' (uses 'wait_queue_head_t'),
 plus macros such as 'static_lock_class!' and 'new_spinlock!'.

 In particular, 'Lock' and 'Guard' are generic implementations that
 contain code that is common to all locks. Then, different backends
 (the new 'Backend' trait) are implemented and used to define types
 like 'Mutex':

 type Mutex<T> = Lock<T, MutexBackend>;

 In addition, new methods 'assume_init()', 'init_with()' and
 'pin_init_with()' for 'UniqueArc<MaybeUninit<T>>' and 'downcast()'
 for 'Arc<dyn Any + Send + Sync>'; as well as 'Debug' and 'Display'
 implementations for 'Arc' and 'UniqueArc'. Reduced stack usage of
 'UniqueArc::try_new_uninit()', too.

— https://lore.kernel.org/lkml/20230429012119.421536-1-ojeda@kernel.org/

https://lore.kernel.org/lkml/20230429012119.421536-1-ojeda@kernel.org/

The merges - v6.4
 - 'types' module: new trait 'AlwaysRefCounted' and new type 'ARef'
 (an owned reference to an always-reference-counted object, meant to
 be used in wrappers for C types that have their own ref counting
 functions).

 Moreover, new associated functions 'raw_get()' and 'ffi_init()'
 for 'Opaque'.

 - New 'task' module with a new type 'Task' ('struct task_struct'), and
 a new macro 'current!' to safely get a reference to the current one.

 - New 'ioctl' module with new '_IOC*' const functions (equivalent to
 the C macros).

 - New 'uapi' crate, intended to be accessible by drivers directly.

 - 'macros' crate: new 'quote!' macro (similar to the one provided in
 userspace by the 'quote' crate); and the 'module!' macro now allows
 specifying multiple module aliases.

 - 'error' module: new associated functions for the 'Error' type,
 such as 'from_errno()' and new functions such as 'to_result()'.

 - 'alloc' crate: more fallible 'Vec' methods: 'try_resize` and
 'try_extend_from_slice' and the infrastructure (imported from
 the Rust standard library) they need.

— https://lore.kernel.org/lkml/20230429012119.421536-1-ojeda@kernel.org/

https://lore.kernel.org/lkml/20230429012119.421536-1-ojeda@kernel.org/

The merges - v6.5

Rust changes for v6.5

A fairly small one in terms of feature additions. Most of the changes in
terms of lines come from the upgrade to the new version of the toolchain
(which in turn is big due to the vendored 'alloc' crate).

 - Upgrade to Rust 1.68.2:

 This is the first such upgrade, and we will try to update it often
 from now on, in order to remain close to the latest release, until
 a minimum version (which is "in the future") can be established.

 The upgrade brings the stabilization of 4 features we used (and 2
 more that we used in our old 'rust' branch).

 Commit 3ed03f4da06e ("rust: upgrade to Rust 1.68.2") contains the
 details and rationale.

— https://lore.kernel.org/rust-for-linux/20230618161558.1051269-1-ojeda@kernel.org/

https://lore.kernel.org/rust-for-linux/20230618161558.1051269-1-ojeda@kernel.org/

The merges - v6.5

 - pin-init API:

 Several internal improvements and fixes to the pin-init API, e.g.
 allowing to use 'Self' in a struct definition with '#[pin_data]'.

 - 'error' module:

 New 'name()' method for the 'Error' type (with 'errname()'
 integration), used to implement the 'Debug' trait for 'Error'.

 Add error codes from 'include/linux/errno.h' to the list of Rust
 'Error' constants.

 Allow specifying error type on the 'Result' type (with the default
 still being our usual 'Error' type).

 - 'str' module:

 'TryFrom' implementation for 'CStr', and new 'to_cstring()' method
 based on it.

— https://lore.kernel.org/rust-for-linux/20230618161558.1051269-1-ojeda@kernel.org/

https://lore.kernel.org/rust-for-linux/20230618161558.1051269-1-ojeda@kernel.org/

The merges - v6.5
 - 'sync' module:

 Implement 'AsRef' trait for 'Arc', allowing to use 'Arc' in code that
 is generic over smart pointer types.

 Add 'ptr_eq' method to 'Arc' for easier, less error prone comparison
 between two 'Arc' pointers.

 Reword the 'Send' safety comment for 'Arc', and avoid referencing it
 from the 'Sync' one.

 - 'task' module:

 Implement 'Send' marker for 'Task'.

 - 'types' module:

 Implement 'Send' and 'Sync' markers for 'ARef<T>' when 'T' is
 'AlwaysRefCounted', 'Send' and 'Sync'.

 - Other changes:

 Documentation improvements and '.gitattributes' change to start
 using the Rust diff driver.

— https://lore.kernel.org/rust-for-linux/20230618161558.1051269-1-ojeda@kernel.org/

https://lore.kernel.org/rust-for-linux/20230618161558.1051269-1-ojeda@kernel.org/

The merges - v6.6

Rust changes for v6.6

In terms of lines, most changes this time are on the pinned-init API
and infrastructure. While we have a Rust version upgrade, and thus a
bunch of changes from the vendored 'alloc' crate as usual, this time
those do not account for many lines.

Toolchain and infrastructure:

 - Upgrade to Rust 1.71.1. This is the second such upgrade, which is a
 smaller jump compared to the last time.

 This version allows us to remove the '__rust_*' allocator functions
 -- the compiler now generates them as expected, thus now our
 'KernelAllocator' is used.

— https://lore.kernel.org/rust-for-linux/20230824214024.608618-1-ojeda@kernel.org/

https://lore.kernel.org/rust-for-linux/20230824214024.608618-1-ojeda@kernel.org/

The merges - v6.6
 It also introduces the 'offset_of!' macro in the standard library
 (as an unstable feature) which we will need soon. So far, we were
 using a declarative macro as a prerequisite in some not-yet-landed
 patch series, which did not support sub-fields (i.e. nested structs):

 #[repr(C)]
 struct S {
 a: u16,
 b: (u8, u8),
 }

 assert_eq!(offset_of!(S, b.1), 3);

 - Upgrade to bindgen 0.65.1. This is the first time we upgrade its
 version.

 Given it is a fairly big jump, it comes with a fair number of
 improvements/changes that affect us, such as a fix needed to support
 LLVM 16 as well as proper support for '__noreturn' C functions, which
 are now mapped to return the '!' type in Rust:

 void __noreturn f(void); // C
 pub fn f() -> !; // Rust

— https://lore.kernel.org/rust-for-linux/20230824214024.608618-1-ojeda@kernel.org/

https://lore.kernel.org/rust-for-linux/20230824214024.608618-1-ojeda@kernel.org/

The merges - v6.6

 - 'scripts/rust_is_available.sh' improvements and fixes.

 This series takes care of all the issues known so far and adds a few
 new checks to cover for even more cases, plus adds some more help
 texts. All this together will hopefully make problematic setups
 easier to identify and to be solved by users building the kernel.

 In addition, it adds a test suite which covers all branches of the
 shell script, as well as tests for the issues found so far.

 - Support rust-analyzer for out-of-tree modules too.

 - Give 'cfg's to rust-analyzer for the 'core' and 'alloc' crates.

 - Drop 'scripts/is_rust_module.sh' since it is not needed anymore.

— https://lore.kernel.org/rust-for-linux/20230824214024.608618-1-ojeda@kernel.org/

https://lore.kernel.org/rust-for-linux/20230824214024.608618-1-ojeda@kernel.org/

The merges - v6.6

Macros crate:

 - New 'paste!' proc macro.

 This macro is a more flexible version of 'concat_idents!': it allows
 the resulting identifier to be used to declare new items and it
 allows to transform the identifiers before concatenating them, e.g.

 let x_1 = 42;
 paste!(let [<x _2>] = [<x _1>];);
 assert!(x_1 == x_2);

 The macro is then used for several of the pinned-init API changes in
 this pull.

— https://lore.kernel.org/rust-for-linux/20230824214024.608618-1-ojeda@kernel.org/

https://lore.kernel.org/rust-for-linux/20230824214024.608618-1-ojeda@kernel.org/

The merges - v6.6
Pinned-init API:

 - Make '#[pin_data]' compatible with conditional compilation of fields,
 allowing to write code like:

 #[pin_data]
 pub struct Foo {
 #[cfg(CONFIG_BAR)]
 a: Bar,
 #[cfg(not(CONFIG_BAR))]
 a: Baz,
 }

 - New '#[derive(Zeroable)]' proc macro for the 'Zeroable' trait, which
 allows 'unsafe' implementations for structs where every field
 implements the 'Zeroable' trait, e.g.:

 #[derive(Zeroable)]
 pub struct DriverData {
 id: i64,
 buf_ptr: *mut u8,
 len: usize,
 }

— https://lore.kernel.org/rust-for-linux/20230824214024.608618-1-ojeda@kernel.org/

https://lore.kernel.org/rust-for-linux/20230824214024.608618-1-ojeda@kernel.org/

The merges - v6.6

 - Add '..Zeroable::zeroed()' syntax to the 'pin_init!' macro for
 zeroing all other fields, e.g.:

 pin_init!(Buf {
 buf: [1; 64],
 ..Zeroable::zeroed()
 });

 - New '{,pin_}init_array_from_fn()' functions to create array
 initializers given a generator function, e.g.:

 let b: Box<[usize; 1_000]> = Box::init::<Error>(
 init_array_from_fn(|i| i)
).unwrap();

 assert_eq!(b.len(), 1_000);
 assert_eq!(b[123], 123);

— https://lore.kernel.org/rust-for-linux/20230824214024.608618-1-ojeda@kernel.org/

https://lore.kernel.org/rust-for-linux/20230824214024.608618-1-ojeda@kernel.org/

The merges - v6.6

 - New '{,pin_}chain' methods for '{,Pin}Init<T, E>' that allow to
 execute a closure on the value directly after initialization, e.g.:

 let foo = init!(Foo {
 buf <- init::zeroed()
 }).chain(|foo| {
 foo.setup();
 Ok(())
 });

 - Support arbitrary paths in init macros, instead of just identifiers
 and generic types.

 - Implement the 'Zeroable' trait for the 'UnsafeCell<T>' and
 'Opaque<T>' types.

 - Make initializer values inaccessible after initialization.

 - Make guards in the init macros hygienic.

— https://lore.kernel.org/rust-for-linux/20230824214024.608618-1-ojeda@kernel.org/

https://lore.kernel.org/rust-for-linux/20230824214024.608618-1-ojeda@kernel.org/

The merges - v6.6

'allocator' module:

 - Use 'krealloc_aligned()' in 'KernelAllocator::alloc' preventing
 misaligned allocations when the Rust 1.71.1 upgrade is applied later
 in this pull.

 The equivalent fix for the previous compiler version (where
 'KernelAllocator' is not yet used) was merged into 6.5 already,
 which added the 'krealloc_aligned()' function used here.

 - Implement 'KernelAllocator::{realloc, alloc_zeroed}' for performance,
 using 'krealloc_aligned()' too, which forwards the call to the C API.

'types' module:

 - Make 'Opaque' be '!Unpin', removing the need to add a 'PhantomPinned'
 field to Rust structs that contain C structs which must not be moved.

 - Make 'Opaque' use 'UnsafeCell' as the outer type, rather than inner.

— https://lore.kernel.org/rust-for-linux/20230824214024.608618-1-ojeda@kernel.org/

https://lore.kernel.org/rust-for-linux/20230824214024.608618-1-ojeda@kernel.org/

The merges - v6.6

Documentation:

 - Suggest obtaining the source code of the Rust's 'core' library using
 the tarball instead of the repository.

MAINTAINERS:

 - Andreas and Alice, from Samsung and Google respectively, are joining
 as reviewers of the "RUST" entry.

As well as a few other minor changes and cleanups.

— https://lore.kernel.org/rust-for-linux/20230824214024.608618-1-ojeda@kernel.org/

https://lore.kernel.org/rust-for-linux/20230824214024.608618-1-ojeda@kernel.org/

The future

Rust for Linux Sponsors

— https://www.memorysafety.org/blog/rustls-and-rust-for-linux-funding-openssf/

https://www.memorysafety.org/blog/rustls-and-rust-for-linux-funding-openssf/

rust.docs.kernel.org

The original discussion on this started early 2021.

It has been a long time coming, but this summer we got the OK to go ahead.

So expect the Rust generated docs to appear in that domain soon.

Per-tag access will be possible (e.g. v6.4, v6.6-rc1 and so on).

Should we have a “tag” selection top bar?

rfl CLI

A CLI tool for “all” your Rust for Linux needs.

Running all the pre-submission tests we want, commit-by-commit

rustfmtcheck, rustdoc, rusttest...

Perhaps including the old Ksquirrel checks.

Running the CI.

Preparing the kernel for Rust usage (e.g. setting up tooling, configuring the
kernel...).

Useful for testing across upgrades (since we fix the version).

Support stable kernels too.

CI

We had some in the old rust branch.

We are going to set it up again for rust-next and the other branches.

This is in addition to KernelCI and Intel LKP.

Merging our own CI files into the kernel?

Linus just merged DRM’s GitLab CI integration!
https://lore.kernel.org/lkml/CAPM=9tz=gx2_zrQ2XD8JNwW1dg6b+Byr5FgYAAq+2f29rydcgg@mail.gmail.com/

https://lore.kernel.org/lkml/CAPM=9tz=gx2_zrQ2XD8JNwW1dg6b+Byr5FgYAAq+2f29rydcgg@mail.gmail.com/

Rust for Linux for Compiler Explorer

● Already prototyped and discussed with Matt Godbolt.
○ The basic setup is quite straightforward.
○ A reasonable set of versions and kernel configs is OK resource-wise.

● Useful for development as well as training.
● Makes it trivial to check how code is actually generated in the kernel.

○ e.g. no need to remember what flags to pass.
● Ideally, also providing an Executor:

○ QEMU booting up a kernel
○ Having a window to write an init script.
○ Useful for trainings etc.

More Compiler Explorer

● Ideally, we would like to get:
○ bindgen as a compiler (versioned)
○ rustfmt as a compiler (versioned)
○ Clippy as a compiler (versioned)
○ Augmenting compiler diagnostics with hyperlinks and custom actions.
○ Pre-filling flags (e.g. --edition for Rust) instead of the Overrides' implicit approach.
○ Better integration with GCC Rust and rustc_codegen_gcc .

The rust-{net,*} branches

Branches intended for synchronization between developers.

Similar to the old rust branch, but for particular subsystems.

To be discussed.

CFI

● “Working on fixing the known issues [1], but these are corner cases and
hopefully shouldn't affect the Linux kernel/Rust-for-Linux.

Fixed building the standard library and its dependencies with CFI enabled.

● Working on fixing CFI violations in the standard library [2][3] -- so far there are
only 2 total, and by disabling CFI in these locations, all core and std tests
pass.

○ The third violation mentioned in the GitHub issue is actually a bug in the CFI implementation
I'm finishing a fix for.”

[1] https://github.com/rust-lang/rust/issues?q=is:open+label:PG-exploit-mitigations+CFI
[2] https://github.com/rust-lang/rust/issues/115199
[3] https://github.com/rust-lang/rust/pull/115200

— Ramon de C Valle

https://github.com/rust-lang/rust/issues?q=is:open+label:PG-exploit-mitigations+CFI
https://github.com/rust-lang/rust/issues/115199
https://github.com/rust-lang/rust/pull/115200

rustc_codegen_gcc

● Implemented:
○ LTO
○ CPU features detection
○ All SIMD tests pass
○ More function attributes (including inline)
○ noalias/restrict

●
● Implemented, but needs more work:

○ Unwinding
●
● Many bug fixes

— Antoni Boucher

rustc_codegen_gcc

“I was able to finish my PR to fix the handling of CPU features and made
another one to support relocation-model=static and now
rustc_codegen_gcc can compile Rust for Linux (rust-next branch)
without any patches.

(well, it still requires patches to GCC like the rest of
rustc_codegen_gcc, but I will merge them upstream eventually).

This requires compiling the sysroot with CG_RUSTFLAGS=-Cpanic=abort
because we currently cannot only compile panic-abort with this flag.”

— Antoni Boucher

GCC Rust (gccrs)

— Arthur Cohen

GCC Rust (gccrs)

— Arthur Cohen

GCC Rust (gccrs)

— Arthur Cohen

Some extra discussion topics

● Mailing List Bot & Ksquirrel
● The “no dead code” rule
● The “no duplicate drivers” rule 🍻
● Should a soundness issue be backported?
● Support in distributions
● Build system

Thank you!

Questions?

The Rust for Linux
Kernel Report

Miguel Ojeda
ojeda@kernel.org

mailto:ojeda@kernel.org

Backup slides

drivers/

my_foo
driver

include/

bindgen

bindings
crate

kernel
crate

foo
subsystem

bar
subsystem

foo/

Forbidden!

Safe

Safe Abstractions

Unsafe

Linux tree

...

rust/library/

builtins
crate

macros
crate

alloc
crate

kernel
crate

alloc
crate

core
crate

exports helpers

include/

bindgen

bindings
crate

Rust tree Linux tree

